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A quadrature scheme for evaluating general first- and higher-order phase integrals is presen- 
ted that creates a more efficient, more stable, and more user-friendly computer code. By this 
means one can both gain the full power of the phase integta; method and dispense with the 
use of JWKB results as initial guesses for “exact” numerical calculations. In such cases the 
high-order phase integral technique may ensure great accuracy with little computational CDS? 
and without any new fundamental modifications to the familiar JWKB procedure. The 
method is illustrated by determining complex Regge pole positions for a test potential. 
,I’ 1987 ;\cahmv Pm>. Inc. 

1. INTRODUCTION 

The higher-order phase integral method is a powerful tool for solving 
Sturm-Liouville systems [l]. The first-order version of the phase integral method, 
the JWKB-approximation, is used extensively because of its fundamental physica. 
significance and computational cheapness. In the region of its validity, depending 
on the location of the turning points in the complex plane, the higher-order correc- 
tions of the phase integral method often ensure extreme speed combined with a 
precision not easily obtainable by any other method. In all cases, the higher-order 
terms have the fundamental role of providing a measure of the validity of the phase 
integral method, thus dispensing with comparison calculations with “exact” 
numerical methods-were results by such methods obtainable at all. 

The applicability of the high-order forms of the phase integral method requires 
an effective technique for calculating the corresponding high-order phase integrals. 
In doing this, as described below, the main idea is the factorizing of the integrand 
into an analytical and a singular part. The former may then be accurately represen- 
ted by polynomial series while the singular part is transformed to certain 
analytically handled, complex path integrals around the nonintegrable turning 
points. This technique, so far restricted to single well potentials. was first presented 
in [2, Method 21. It yields some distinct advantages in practical calculations; the 
possibility of a code both flexible and weakly dependent on the potential and a 
straightforward generalization to a full complex formalism. This complex formalism 
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phase integral method makes possible the extension of its range of applicability to 
various problems of scattering theory in which there are many very time-consuming 
problems. For instance, the partial wave representation of differential cross-section 
may need thousands of terms with accurate phase shifts and the need for an efficient 
computation procedure for them is obvious. 

A preceding paper by our group presents methods for evaluating phase integrals 
in the most important cases of the distributions of the turning points [3]. Two 
techniques were devised for taking into account the numerical effects of the 
coalescence of an “internal” and an “external” turning point. Different quadrature 
intervals and mesh points for these Gaussian quadraturelike formulas were 
examined by explicitly inverting the corresponding Vandermonde matrices. The 
inexpediency of this approach lies in the numerical sensitivity of the inversion of 
high-order matrices. This obstacle was eliminated in [4] by adopting orthogonal 
basis polynomials to define the expansion coefficients. Paper [S] then presented the 
final generalization of this method to obtain first- and higher-order phase integrals 
for arbitrary complex turning points along implicitly defined complex contours. The 
effect of an “external” turning point was taken into account and the defining the 
quadrature intervals independent of the actual turning points was solved by choice 
of a suitable smoothing function. The extension of the quadrature interval is 
numerically effective in difficult high-order cases [3,4]. Also, in subsequent com- 
putations with slightly different potential parameters, it may be expedient to utilize 
the same quadrature interval. However, this comprehensive procedure has two 
unsound features in extensive computations; the user needs some experience in 
choosing a suitable mesh number for the polynomial expansion, and the rapidly 
growing alternant combination coefficients make the calculation of the path 
integrals numerically unreliable. 

The efficiency of the phase integral quadratures depends on the number of mesh 
points required to define the polynomial approximation. This varies considerably 
with the potential, with the order of approximation used, and, naturally, with the 
desired accuracy. Certainly, it is possible to implement a general code where all the 
practical considerations introduced in [S] are controlled by appropriate choices of 
different smoothing functions and quadrature intervals, but this may be accotn- 
panied by a loss of computational efficiency and comprehensibility of the program. 
Furthermore, when treating quadrature subroutines as “black boxes” it is of great 
importance to avoid accidental instabilities arising, for example, from an overly 
high accuracy requirement. 

The purpose of the present article is to provide a computer code for handling 
practical problems, for users who lack a profound knowledge of the method. In the 
present version, the use of subroutines as “black boxes” is examined both when 
evaluating the smoothed (Sect. 3) and the singular (Sect. 4) integrand factors of the 
phase integrals. A new structure of mesh points has been chosen which 
automatically allows the use of a suitable mesh for each phase integral without a 
loss of computational economy. For the polynomial expansion, orthogonal 
Chebyshev polynomials are adopted, and with the aid of these fixed mesh points, 
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the real valued path integrals may be evaluated by direct recursion without resort 
to explicit polynomial expansion. A much more compact and efhcient form of com- 
putation is achieved, which makes feasible more accurate, more extensive, or more 
complicated calculations. Although these advantages are gained at the cost of 
generality, this scheme of using fixed mesh points for separated turning points is 
capable of yielding accurate results in most realistic situations. It may be noted that 
the phase integral approximation becomes increasingly invalid when the coalescing 
of an “external” turning point leads to numerical difficulties, unless certain correc- 
tion terms are included into the phase integrals [6, 73. Such high-order correcGon 
functions are known for a very few cases, and there are excellent reasons for using 
the Priifer phase function in combination with the phase integral approximation 
when solving problems with coalescing turning points [ 1, 81. 

In practical problems, for instance when determining quantum mechanical quan- 
tities by iterative procedures, the derivatives of various characteristic properties of 
the system, such as the energy, may be needed. In the phase integral approach, the 
problem is formulated as a function of the phase integrals via certain quantum con- 
ditions. Two advantages of this approach are the ease of formulating, for the phase 
integrals, the analytical derivatives with respect to these parameters, and the ease of 
implementing the problem numerically. In fact, the method to be described allows 
to code to yield automatically the desired energy derivatives of the phase integrals 
without an explicit definition in the user supplied nucleus. The computational cost 
of this gain is minimal, due to the similarity of the expressions for the quantum 
condition phase integrals and their derivatives. 

In the following, the general description of the method is presented in Section 2. 
In Section 3, the numerical determination of the expansion coefficients by means of 
the new mesh points structure is illustrated, while the required weight integrals are 
evaluated in Section 4. The method is then illustrated by test calculations in 
Section 5. 

2. METHOD 

The phase integrals of interest may be written in the form 

where k > - 1 is an integer, U(r) any smooth potential function, E the energy: and 
J;(r) some analytic combination of powers of r, U(r) and its derivatives. Due to the 
integration path f in the complex r plane, there exist two types of phase integrals. 
The two-turning-points integrals are integrated along a loop Trz encircling the two 
turning points r r, f=z, and the one-turning-point integrals are defined by a nonclosed 
path f,, around the turning point r2 with end points at different lips of the branch 
cut, as depicted in Fig. 1. At the turning points, defined as zeros of [E- U(r) 
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FIG. 1. Schematic drawing of the integration contours and of the distribution of turning points in 
the complex r plane. The points r, and r2 are adjacent turning points defining a two-turning-points con- 
tour r,*. The point Y~E [ri, r2] is an integration point associated with a one-turning-point contour r,,. 
r3 denotes an external turning point outside the integration region. 

high-order integrand k > 0 in Eq. (l), has nonintegrable singularities and in general 
E, U(r), f,Jr) and the turning points can take complex values. By the definition of 
the turning points, the factor [E- U(Y)] may be written as 

E-U(r)=u(r) fl (I.-Y), (2) 
I ri I 

where, assuming analytic U(r) and simple zeros, u(I.) is analytic and different from 
zero at the turning points {yi} under consideration and in the region including no 
other turning points. In this region, fk(r)/[u(r)]““‘;” is analytic and may be 
therein expanded to polynomial series. 

For the two-turning-points integrals, a convenient expansion range for the 
analytical part of the integrand in Eq. (1 j is [r,, rz] between the turning points. 
The Chebyshev polynomials are used as basis functions and the orthogonal range 
[ - 1, l] is achieved by defining the change of variables 

r = gr, + r2) + gl.2 - r,) z. 

By introducing the notation (i = uV/&) 

F(z) =fk(r)/[Au(r)]k+(1,2)~, 

(3) 

(4) 
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where the dimensionless factor A depends on the number of turning points, the 
phase integral may be written in the form 

where r;, is the integration path around the points ) 1 in the z plane 
corresponding to r12 in the r plane. By approximating the analytical F(z) as a trun- 
cated Chebyshev expansion 

and by introducing the notation 

! ” , dz T,,(z)/[l -,l]“+““‘=/:(:;,n)~ 
-‘I2 

the phase integral takes the form 

N ,v. 2 
d,(E) = 1’ b,,J;(k, n) = C’ b,J-(k, 2n), (3) 

?I=0 n=O 

where, for later convenience, the notation x’ means a sum with the first ‘term 
halved; C’T=, n,, = a,/2 + a, + . . + a.\,. The summations can be taken over only 
even values of y1 because JT(k, n) vanishes for odd n (see Sect. 4). 

In the case of one-turning-point integrals, the procedure is the same as above but 
a suitable expansion range is [r,, rz] between the integration point r,, and the rurn- 
ing point, corresponding to Fig. 1. A convenient change of the variable is now 

r=r,+(r2-rb)z 

yielding for F(z) in Eq. (4) the Chebyshev series representation 

with basis polynomials T:(z) orthogonal on the range [IO, 1-J In applications where 
the integration point rb approaches infinity it is best to write out explicitly the con- 
tribution F(F(= = O), which is determined by the boundary conditions, against the dis- 
advantage of overflow. For one turning point the reference function to be used is 
[I - z], corresponding to Eq. (5), and the definition of the required weight integral 
has the form 

, dz T,*(z)/[l -~]“+~‘.:~)=Jr(,k, n) 
- rtl2 

(11) 
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with & corresponding to r,, yielding 

I,(E) = f’ 6, J:“(k, n). (12) 

Generally, one of the most important concepts used in numerical problems is the 
method of successive approximations. Among such techniques the Newton-~ 
Raphson-type iteration methods effectively utilize the derivatives of the iteration 
equation. For the phase integrals of Eq. (1 ), which are functions of certain potential 
parameters, the analytical derivatives are commonly easy to derive and in the 
region of validity of the phase integral method the phase integrals are typically 
smooth functions of these parameters. Thus the desired iteration procedure may be 
achieved without any doubt regarding the correct convergence restrictions or 
appropriate initial values and step sizes. Particularly, the form of the corresponding 
derivative with respect to energy is simply 

ai-I/c(E)1 
C?E (13) 

and because fk+ , =. k f in Eq. (1) the first and higher derivatives are extremely 
efficient to compute once I,(E) has been evaluated, since most of the computational 
work for I,, ,(E) having already been performed in computing I,(E). Furthermore, 
the above means that in determining real or complex energy eigenvalues, the initial 
value of energy can not only be crude but even completely wrong, because in the 
phase integral formalism each eigenvalue is unambiguously associated with a quan- 
tum number, which is not always easy to implement for direct numerical techni- 
ques. 

It may be noted that when the expansion coefficients b, of F(z j are numerically 
calculated, as will be described in Section 3, the turning points are not special 
points and the numerical work can be done without worry about the actual 
location of branch cuts caused by the multiply valued integrand in Eq. (1). This 
multiple valuedness is encountered in evaluating the weight integrals JT or JF, but 
it is dealt with analytically, as will be described in Section 4, and the topologically 
proper integration paths are achieved by a direct definition. 

3. MESH POINTS 

In the case of two turning points, the expansion coefficients of F(z) in Eq. (6 j are 

(14) 

and the actual task is the choice of the quadrature scheme and the quadrature 
points for the integral in Eq. (14). An obvious approach is the usual N-point 
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Gaussian quadrature, the zeroes of an Nth order orthogonal polynomial chosen for 
quadrature points. One choice is the zeros of the Chebyshev polynomial 
T.y(~) = cos[N arccos(z)], 

to approximate the coefftcients 6, [S]. Another possibility is, however, the use 3: 
the points at which Ir,V(z)l = 1, the extrema of T,v(r) 

m = O,..., N 

yielding the approximation for expansion coefficients [9] 

(i7) 

where 2” is a “trapezoidal” sum, i.e., Z”fZo a, = a,,? + a, i . . + a,, _ l $ ~,,~j2. 
Equation (17’) holds for n = N with the correspondence b,v 2 4 b!(Y). The expression 
in Eq. ( 17) is exact for a polynomial F(z j T,,(z) of order up to 2N - 1, due to the 
discrete orthogonality of Chebyshev polynomials at the extrema (n, ~1’ d Nj 

i 

0, n #n’ 
q/2, n = n’ # 0, N 

m=O N, n=n’=O. N. (iSj 

The use of the extrema offers some computational advantages. The doubling of the 
number of mesh points to 2N makes only N new mesh points necessary because 

with the fixed points ( - 1, 0, 1; = (z:‘}& a 11 owing an adaptive program code with 
minimum function evaluations. Corresponding to Eq. (191, the expansion coef- 
ficients with doubled mesh may now be written recursively by summing separately 
over the odd and the even values of m, 

=; (b),N’ + b;,“‘;‘), n = Q,..., N- I, 120) 
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where the last sum over m, bicN’, is just the N zero points quadrature form for b,, 
[S]. The N+ 1 last coefficients are directly formed by 

b;$“)+ = +(bj;Y’- b’$“‘), n = O,..., N (21) 

if only the b;‘“’ are computed for iz values up to N - 1 (62’“’ = 0), because of the 
symmetry properties of 7’,(z) at the extreme 

( - l)‘, &&,,(Z!$v’) = T&E”‘) = r,,(z;““‘). n = O,..., N. (22) 

Corresponding to the two last equations, it is possible to minimize storage 
requirement, if desired, for example for microcomputer adaptations. The particular 
simple form of the coefficient b $‘) = (2/N) C”,“= 0 ( - 1)” F(ir’) is remarkable. In 
practical calculations of the phase integral I,(E) it is convenient to double the num- 
ber of mesh points N until either the absolute value of the term bp)JT(k, N), 
according to Eq. (8), has reached some prescribed accuracy requirement, or b’,N’.has 
converged to the relative machine accuracy parameter. Once the by) have con- 
verged with a suitable accuracy to the expansion coefficients b,Z, in summing over II 
in Eq. (S), the last calculated term may be used as a truncation option. 

In the case of the one-turning-point procedure, the expansion coefficients are 
achieved as in Eq. (17) by determining formally F(Z) = F*(z*) = F*[(t(z + I)], 
because r:(z*) = T,(Z) by the definition of Chebyshev polynomials orthogonal on 
the range [0, 1-J. In this case the b,, for odd values of n are also required. 

As a final practical point it is to be noted that F(Z) in Eq. (4) is not well 
defined at the turning points f 1 in the z plane when the poles of l/[E- U(r)] are 
removed by direct multiplication by the reference function (1 -z’) or (1 - 2). At 
these points F(Z) can still be easily calculated by using 1’Hospital’s rule for the 
required expressions as follows (P = &/dz), lim,, f 1 Cl- z’]/[E- U(r)] = 
*2/[U’(r) +I Ir=r,-+lj or lb+, [l -z]/[E- U(l)] = l/[U’(r) i] JF=Y,,,, the prime 
denoting derivation with respect to r. These evaluations at the turning points are 
required only once for each phase integral, while for higher-order integrals the 
routines for the derivatives of U(r) are needed in any case. 

4. WEIGHT INTEGRALS 

The weight integrals to be evaluated are J,7(k, n) in the case of the two-turning- 
points phase integrals and Jf*(k, n) for the one-turning-point integrals, 

J;(R, nj = j, dz 7’,(z)j[ 1 - z2]“+ (1,‘2), 
12 

(23) 

Jf* (k, n) = 1 dz T,T(z)/[ 1 -zlk+(‘i2’, (24) 
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These integrals are well defined by their integration paths f’i, and fL2 in the z plane 
which is mapped from the I’ plane by linear transformations defined by transform- 
ing either the range [ri, r7] onto [ - 1, 11 or the range [r,, rJ onto LO, I], respec- 
tively. As depicted in Fig. 1, the proper integration paths are defined as paths encir- 
cling the turning points under consideration and not crossing the branch cuts 
emerging from the turning points and without concern for a numerical deter- 
mination of the course of the paths. In addition, all the integrals J:(k, fz) and 
Jf*(k, n j will be real. 

In the earlier version of the quadrature procedure [S], the weight integrals 
Jl(k, 11) and Jy(k, n) were evaluated with the help of recursion relations of the sim- 
pler weight integrals, where in Eqs. (23) and (24) the basis functions T,,(Z) or r,T(:) 
have been replaced with the basis {z”}, by forming a linear combination of t.hese 
simpler weight integrals through the use of the coefficients of Chebyshev 
polynomials as combination coefficients. This method, however, although exact in 
principle, is a numerically badly conceived calculation because of the rapidly grow- 
ing alternant sign coefficients, which may cause numerical instability even at 
moderate values of n. This instability may be avoided by using the general recursion 
properties of the orthogonal polynomials yielding directly a much more compact 
and computationally favorable recursion form for the weight integmls J-T(k, t?) and 
J;“(k. n j. 

In the case of the two-turning-points integrals, the basic steps are the recursion 
properties of T,,(Z) as follows 

T,+2p)=2~T,,+,(~j- T,,(Z), n 3 0, ;3S) 

K+,(-r)=2(n+ 1) T,(z)+= n ! - . n+ i T’~ (7) I7 > 2 

the prime denoting derivatives with respect to 2. The integrand resulting from the 
first term of the right side of Eq. (25) may be evaluated by integration by parts 
yielding 

the prime denoting a halved term in summing with m = 0, where the last expansion 
is obtained by substituting n/2 times Eq. (26) and by observing that 7”,(z) = To(z). 
Here, only even values of n and m may be assumed because the parity of T,,(Z) 
behaves as n and on the loop riz all J,T(k, nj vanish for n odd. In addition, the first 
nonzero value of JT(k, n) exists when n = 2k > 0, taking the value - ( - 1 j” 2%, 
where 2’“-’ is the leading coefficient of the polynomial T2k(~j, which may be 
obtained by expanding the factor [ 1 - z’] -k-‘1’2J as a binomial series on the circle 
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centered at z = 0 with a radius greater than unity. Thus the recursion formula with 
respect to n and k is 

J,T(k, n+2)= -J,T(k, II)+----- “‘;;;’ !f’ J;(k - 1, 2m), (28) 
m=k-l 

when n/2 3 k- 12 0. For the initial value k = 0, the turning points z = k 1 are 
integrable singularities yielding J,“(O, 0) = -271 and the vanishing of all Jc(O, n) 
when n #O because of the orthogonality of Chebyshev polynomials and because 
T,,(z) = 1, corresponding to Eq. (14). For this reason, the recursion relation in 
Eq. (28) is considerably simplified for k = 1, yielding simply JT(l, n) = n2x for even 
n > 2. Corresponding to this simplicity, the third-order terms (k= 1) in phase 
integral calculations may now be implemented for restricted problems even with an 
ordinary programmable pocket calculator, a point which may be of practical 
significance, because in the region of validity of the method the accuracy ensured by 
the third-order correction is suffkient for most practical applications. This point 
will shortly be discussed by a sample calculation in Section 5. 

In the case of the one-turning-point integrals, the desired recursion formula may 
be introduced by recurring to the polynomials 7’,(z) orthogonal on the usual range 
[ - 1, l] with the help of the relations 

T,*(z)=(-l)n T;(l-z)=T,,(Jij. (29) 

Corresponding to the last equation, the change of variable q= fi is 
introduced, in which case the integration path Yb2 is deformed to the path from - 1 
to 1 avoiding the singular point q = 0. The weight integral may now be written in 
the form 

1 r~2 dz T,T(z)/[ 1 - z]k+ (‘,‘2) = -2( - 1)” J’ dq T&)/q’k. (30) 
-1 

According to Eq. (25) 

and after n + 1 > 1 substitutions as above, the final recursion will have the form 

Jf*(k,n+l)= -Jy(k,n)+4 i’ (-l)“-“‘Jf*(k-1,m) 
m=O 

(32) 

the prime denoting a halved first term in the cumulative sum over rn. The required 
weight integrals with initial value k = 0 are easily evaluated with the aid of Eq. (26) 
when 

(-1)“4 
JT*(O,n)= --2(-I)“/’ dq T,,,(q)=4n’, -1 (33) 
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because T,,( 2 1) = ( + 1)“. As a linal step, the required weight integrals with the 
initial value II = 0 are obtained by a direct integration 

~f-(k, o)= -2 jl, dqjq- -A. 

Note that although the first order phase integrals bavc k= - 1 in Eq. (1): the 
singularities at the points z = f 1 may still be removed by multiplication with 
[l - z’] or [ 1 -z]; the initial value k = 0 in the recursion for the corresponding 
weight integrals may thus be used. Actually, in the case of the two-turning-points 
calculations, the evaluation of the phase integral in Eq. (8) is reduced to the 
familiar Gauss-Chebyshev quadrature at the extrema, when k = - 1 or 0 in Eq. (L), 
because the only nonvanishing Jc(O, n) has n = 0, and the absolute value of 5!v may 
be used as the measure of the accuracy of the quadrature. 

5. NUMERICAL TESTS 

In order to test the method described above, the higher-order Regge pole 
positions up to fifth-order were computed. The effective potential C’(r) is defined by 

U(r) = V(r) + 1(1+ 1)//?/Y’, (35, 

where j’ = 2~1’h and 

(36) 

is a LJ( 13, 6) potential with the parameters E = 4.0 x lo-“J, I’,, = 4.0 x IO-:’ m, and 
,u = 4.377 x 10pX6 kg, corresponding approximately to the elastic scattering of K by 
HBr [lo]. The real energy parameter E = 2.0 x lo-” J was used and in Regge-pole 
theory the orbital angular momentum number I = I, is allowed to take on complex 
values [I I]. The calculations were carried with the value of the Planck constam 
h = 1.0543 x 10 34 J. The expressions forf,(r) in Eq. (,l ) in the case of third- (% = I ) 
and fifth-order (k = 3) corrections are given in [S] and the six-decimal Regge pole 
positions I,, for II = 0, l,..., 9 and IZ = 10, 20 ,..., 100 are presented in Table I. The 
quanta1 results have been calculated to three decimai places which differ in their last 
digit from those given here, corresponding to the accmacy of the parameters given 
in [ 121. The values in Table 3 of [12] may be obtained by using in phase integral 
calculations the value of the Planck constant k = 1.054345 x 10p3” J. An analysis of 
the higher-order contributions to the pole positions of Table I indicates that the 
third-order values are accurate to six, seven, or eight decimal places for both real 
and imaginary parts of pole positions I,, n = 0, iz = 50, or n = 100, respectively. and 
that the accuracy of the fifth-order results is even better whereas the first-order 
calculations yielded two-decimal accuracy for all the pole positions above. For all 
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TABLE I 

Regge Pole Positions I, for R = 0, l,..., 9 and II = 10, 20 ,_.., 100 

12 

0 180.018697 21.219655 10 175.080666 50.561778 
1 179.245735 24.035487 20 176.193680 79.645373 
2 178.529636 26.890830 30 181.148497 105.787244 
3 177.873313 29.780920 40 187.632608 128.786442 
4 177.279117 32.700804 50 194.432936 149.370767 
5 176.748840 35.645416 60 201.103034 168.242410 
6 176.283716 38.609632 70 207.522922 185.880999 
7 175.884428 41.588342 80 213.682142 202.592714 
8 175.551134 44.576508 90 2I9.601053 218.576896 
9 175.283485 47.569226 100 225.305716 233.969174 

Re I, Im I, W Re I,, Im I, 

pole positions I,, n = O,..., 100, the simple Bohr-Sommerfeld quantization formula 
was used [12] because of the well-separated distribution of the turning points, 
allowing a very simple iteration procedure such as using the previously iterated 
value of the pole position as an initial guess for the next pole. With these (wrong) 
initial guesses the iteration of the first hundred pole positions to six correct decimal 
places took about 0.15 set CPU time/pole on a VAXllj750 computer. 

The third-order two-turning-points phase integrals with accuracy requirement 
1.0 x 10e6 need 7 (n = 0), 15 (n = 50), and 25 (IZ = 100) mesh points for polynomial 
approximation, the increase of mesh points for pole positions I, with higher II 

values corresponding to the increase in the range of approximation [r,, rZ]. In 
practice, no estimate of the number of mesh points is required because in the com- 
putation procedure the number of mesh points is automatically increased until 
either the desired or the highest possible accuracy is achieved. 

Because the integrand in Eq. (1) is integrable in the region including no turning 
points, it may sometimes be more efficient to integrate the middle part 
[I.,? rb] c [r,, rz] sufficiently far from the turning points by some standard 
integrator and to evaluate separately both contributions near the turning points by 
a one-turning-point procedure. Such cases may occur when the turning points are 
far apart or when extremely high accuracy is required. For comparison with the 
previous method, the calculations were repeated by using the earlier version of the 
one-turning-point procedure [5]; when very high accuracy was required, for some 
pole positions, the calculation completely blew up because of the numerical sen- 
sitivity of that method. It is evident that in extensive calculations the accidental 
instability of this kind, which is avoided in the present method, may cause much 
confusion and wasted computation. 

Another test case here is the determination of the energy eigenvalues of the 
Sturm-Liouville problem when U(v) = r4 in Eq. (I). This problem is a well-known 
example of the breakdown of the JKWB-approximation when the energy tends to 
zero, which is not surprising, because of the coalescence of all four turning points of 
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the problem. On the other hand, for higher quantum numbers sufficient accuracy is 
achieved with higher-order phase integral calculations as discussed in [ 11, but the 
basic point here is to show that a problem like this can be solved even with an 
ordinary programmable calculator with program capacity of about 200 key instruc- 
tions. For instance, by a third-order calculation of the eigenvalue El0 six-digit 
accuracy, E,, = 50.2653, was obtained. 
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